

Decibels in the context of ADSL

19 Jonathan Tue, Jul 25, 2017 [Broadband / IC-Air](#) 3504

The decibel

The decibel is a logarithmic unit which measures the ratio of two powers. It was coined by [Hans Pfeiffer](#). Bels = logarithm (base 10) of the ratio OutputPower / InputPower. This was rather a cumbersome way of specifying gain.

Because this was rather a cumbersome way of specifying gain, the decibel was introduced. It is a logarithmic unit for specifying power ratios.

1. Because of the way that logarithms work, the gain of each stage is easier than multiplying the gains of all stages.

2. The logarithm has the value 1.0 at 0 dB. If the input and output powers are equal, then the gain is 0 dB. If the input power is lower than the output power, the gain is negative.

Some example values

Decibel value	Arithmetic equivalent
-6 dB	0.25
-3 dB	0.5
0 dB	1
3 dB	2
6 dB	4
10 dB	10
20 dB	100
30 dB	1000

Attenuation

Given that the line is a noisy line, it is not surprising that the signal for the high frequencies used in the exchange and the user. What may surprise you is just how much gets lost. In the [BT](#) report of 6 September 2000, the limiting attenuation figure for a UK ADSL in the telephone pair was of about 32 dB. Lower levels of attenuation are obviously preferable. A power ratio of

Signal-to-noise ratio

is not to make life too much more complicated for the receiving equipment. It is the ratio of the signal power to the noise power. This ratio is called the signal-to-noise ratio, or SNR. The greater this ratio is, the better the signals. The limiting value of SNR is considered to be 6 dB (at 0.6 dB). This corresponds to ADSL. Significantly lower values of SNR will make it very difficult to separate out a clear signal. It should be noted that ADSL modems and routers measure only a radio noise margin. If a measured SNR was 40 dB, then the modem/router would report a noise margin of 4 dB.

Decibels used as power measurement

Another method: the decible specifies a ratio between two numbers. One number is divided to dB, and then the power is specified as that number of dBm. For example: converted

Power	dBm equivalent
1 mW	0 dBm
2 mW	3 dBm
10 mW	10 dBm

100 mW	20 dBm
1 W (1000 mW)	30 dBm
100 W (100,000 mW)	50 dBm

Most end-users report the upstream power requirement as the line budget (dB) for the exchange. The (or remote) power is the power transmitted by the DSLAM or MSAN to the end-user.

Online URL: <https://kb2.ic.uk/article.php?id=19>